Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 130
Filtrar
1.
PLoS Negl Trop Dis ; 18(2): e0011865, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38300899

RESUMO

BACKGROUND: Chagas cardiomyopathy (ChCM) is a severe form of Chagas disease and a major cause of cardiovascular morbidity and mortality. The dysregulation of the immune response leads to cardiac remodeling and functional disruptions, resulting in life-threatening complications. Conventional diagnostic methods have limitations, and therapeutic response evaluation is challenging. MicroRNAs (miRNAs), important regulators of gene expression, show potential as biomarkers for diagnosis and prognosis. AIM: This review aims to summarize experimental findings on miRNA expression in ChCM and explore the potential of these miRNAs as biomarkers of Chagas disease. METHODS: The search was conducted in the US National Library of Medicine MEDLINE/PubMed public database using the terms "Chagas cardiomyopathy" OR "Chagas disease" AND "microRNA" OR "miRNA" OR "miR." Additionally, bioinformatics analysis was performed to investigate miRNA-target interactions and explore enrichment pathways of gene ontology biological processes and molecular functions. RESULTS: The miR-21, miR-146b, miR-146a, and miR-155 consistently exhibited up-regulation, whereas miR-145 was down-regulated in ChCM. These specific miRNAs have been linked to fibrosis, immune response, and inflammatory processes in heart tissue. Moreover, the findings from various studies indicate that these miRNAs have the potential as biomarkers for the disease and could be targeted in therapeutic strategies for ChCM. CONCLUSION: In this review, we point out miR-21, miR-146b, miR-146a, miR-155, and miR-145-5p role in the complex mechanisms of ChCM. These miRNAs have been shown as potential biomarkers for precise diagnosis, reliable prognostic evaluation, and effective treatment strategies in the ChCM.


Assuntos
Cardiomiopatia Chagásica , Doença de Chagas , MicroRNAs , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Cardiomiopatia Chagásica/diagnóstico , Cardiomiopatia Chagásica/genética , Cardiomiopatia Chagásica/metabolismo , Biomarcadores/metabolismo , Regulação para Cima
2.
PLoS Negl Trop Dis ; 17(7): e0011474, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37440604

RESUMO

BACKGROUND: Patients with chronic Chagas disease present marked clinical and immunological heterogeneity. During the disease, multiple immune mechanisms are activated to fight the parasite. The purpose of this study was to investigate the expression patterns of genes involved in relevant immunological processes throughout the disease in patients with chronic Chagas disease. METHODOLOGY/PRINCIPAL FINDINGS: High-throughput RT-qPCR with QuantStudio 12K Flex real-time PCR system was used to evaluate the expression of 106 immune-related genes in PBMC from a cohort of cardiac Chagas disease patients (CCC I), asymptomatic patients (IND) and healthy donors (HD) after being stimulated with T. cruzi soluble antigens. Principal component analysis (PCA), cluster analysis and volcano plots were used to identify differentially expressed genes. In addition, gene set enrichment analysis (GSEA) was employed to identify the enriched immunological pathways in which these genes are involved. PCA revealed the existence of a statistically divergent expression profile of the 36 genes correlated with PC1 between CCC I patients and HD (p < 0.0001). Differential gene expression analysis revealed upregulation of 41 genes (expression fold-change > 1.5) and downregulation of 14 genes (expression fold-change < 0.66) (p = 8.4x10-13 to p = 0.007) in CCC I patients versus HD. Furthermore, significant differences in the expression level of specific genes have been identified between CCC I and IND patients (8 up and 1 downregulated). GSEA showed that several upregulated genes in CCC I patients participate in immunological pathways such as antigen-dependent B cell activation, stress induction of HSP regulation, NO2-dependent IL12 pathway in NK cells, cytokines-inflammatory response and IL-10 anti-inflammatory signaling. CONCLUSIONS: Cardiac Chagas disease patients show an antigen-specific differential gene expression profile in which several relevant immunological pathways seem to be activated. Assessment of gene expression profiles reveal unique insights into the immune response that occurs along chronic Chagas disease.


Assuntos
Cardiomiopatia Chagásica , Doença de Chagas , Trypanosoma cruzi , Humanos , Trypanosoma cruzi/genética , Leucócitos Mononucleares , Doença de Chagas/parasitologia , Citocinas/metabolismo , Ativação Linfocitária , Cardiomiopatia Chagásica/genética , Doença Crônica
3.
Exp Biol Med (Maywood) ; 248(22): 2062-2071, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38235691

RESUMO

Chagas disease (CD), caused by the protozoan parasite Trypanosoma cruzi, is a neglected disease affecting around 6 million people. About 30% of CD patients develop chronic Chagas disease cardiomyopathy (CCC), an inflammatory cardiomyopathy that occurs decades after the initial infection, while most infected patients (60%) remain asymptomatic in the so-called indeterminate form (IF). Death results from heart failure or arrhythmia in a subset of CCC patients. Myocardial fibrosis, inflammation, and mitochondrial dysfunction are involved in the arrhythmia substrate and triggering events. Survival in CCC is worse than in other cardiomyopathies, which may be linked to a Th1-T cell rich myocarditis with abundant interferon (IFN)-γ and tumor necrosis factor (TNF)-α, selectively lower levels of mitochondrial energy metabolism enzymes in the heart, and reduced levels of high-energy phosphate, indicating poor adenosine triphosphate (ATP) production. IFN-γ and TNF-α signaling, which are constitutively upregulated in CD patients, negatively affect mitochondrial function in cardiomyocytes, recapitulating findings in CCC heart tissue. Genetic studies such as whole-exome sequencing (WES) in nuclear families with multiple CCC/IF cases has disclosed rare heterozygous pathogenic variants in mitochondrial and inflammatory genes segregating in CCC cases. In this minireview, we summarized studies showing how IFN-γ and TNF-α affect cell energy generation, mitochondrial health, and redox homeostasis in cardiomyocytes, in addition to human CD and mitochondria. We hypothesize that cytokine-induced mitochondrial dysfunction in genetically predisposed patients may be the underlying cause of CCC severity and we believe this mechanism may have a bearing on other inflammatory cardiomyopathies.


Assuntos
Cardiomiopatias , Cardiomiopatia Chagásica , Doença de Chagas , Doenças Mitocondriais , Humanos , Fator de Necrose Tumoral alfa/metabolismo , Cardiomiopatia Chagásica/genética , Cardiomiopatia Chagásica/metabolismo , Cardiomiopatia Chagásica/patologia , Cardiomiopatias/etiologia , Miócitos Cardíacos/metabolismo , Inflamação , Arritmias Cardíacas , Doença Crônica
4.
Front Immunol ; 13: 1020572, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36248819

RESUMO

Chagas disease is a parasitic disease from South America, affecting around 7 million people worldwide. Decades after the infection, 30% of people develop chronic forms, including Chronic Chagas Cardiomyopathy (CCC), for which no treatment exists. Two stages characterized this form: the moderate form, characterized by a heart ejection fraction (EF) ≥ 0.4, and the severe form, associated to an EF < 0.4. We propose two sets of DNA methylation biomarkers which can predict in blood CCC occurrence, and CCC stage. This analysis, based on machine learning algorithms, makes predictions with more than 95% accuracy in a test cohort. Beyond their predictive capacity, these CpGs are located near genes involved in the immune response, the nervous system, ion transport or ATP synthesis, pathways known to be deregulated in CCCs. Among these genes, some are also differentially expressed in heart tissues. Interestingly, the CpGs of interest are tagged to genes mainly involved in nervous and ionic processes. Given the close link between methylation and gene expression, these lists of CpGs promise to be not only good biomarkers, but also good indicators of key elements in the development of this pathology.


Assuntos
Cardiomiopatia Chagásica , Doença de Chagas , Trifosfato de Adenosina/metabolismo , Biomarcadores/metabolismo , Cardiomiopatia Chagásica/diagnóstico , Cardiomiopatia Chagásica/genética , Doença de Chagas/genética , Metilação de DNA , Humanos
5.
Front Immunol ; 13: 946350, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35860267

RESUMO

Background: Chagas disease is a lifelong infection caused by the protozoa Trypanosoma cruzi endemic in Latin-America and emergent worldwide. Decades after primary infection, 20-30% of infected people develop chronic Chagas cardiomyopathy (CCC) while the others remain asymptomatic. CCC pathogenesis is complex but associated with sustained pro-inflammatory response leading to tissue damage. Hence, levels of IL-10 could have a determinant role in CCC etiology. Studies with Latin-American populations have addressed the association of genetic variants of IL-10 and the risk of developing CCC with inconsistent results. We carried out a case control study to explore the association between IL-10-1082G>A (rs18008969), -819C>T (rs1800871), -592A>C (rs1800872) polymorphisms and CCC in a population attending a hospital in Buenos Aires Argentina. Next, a systematic review of the literature and a meta-analysis were conducted combining present and previous studies to further study this association. Methods: Our case control study included 122 individuals with chronic T. cruzi infection including 64 patients with any degree of CCC and 58 asymptomatic individuals. Genotyping of IL-10 -1082G>A, -819C>T, -592A>C polymorphisms was performed by capillary sequencing of the region spanning the three polymorphic sites and univariate and multivariate statistical analysis was undertaken. Databases in English, Spanish and Portuguese language were searched for papers related to these polymorphisms and Chagas disease up to December 2021. A metanalysis of the selected literature and our study was performed based on the random effect model. Results: In our cohort, we found a significant association between TT genotype of -819 rs1800871 and AA genotype of -592 rs1800872 with CCC under the codominant (OR=5.00; 95%CI=1.12-23.87 P=0,04) and the recessive models (OR=5.37; 95%CI=1.12-25.68; P=0,03). Of the genotypes conformed by the three polymorphic positions, the homozygous genotype ATA was significantly associated with increased risk of CCC. The results of the meta-analysis of 754 cases and 385 controls showed that the TT genotype of -819C>T was associated with increased CCC risk according to the dominant model (OR=1.13; 95% CI=1.02-1.25; P=0,03). Conclusion: The genotype TT at -819 rs1800871 contributes to the genetic susceptibility to CCC making this polymorphism a suitable candidate to be included in a panel of predictive biomarkers of disease progression.


Assuntos
Cardiomiopatia Chagásica , Doença de Chagas , Estudos de Casos e Controles , Cardiomiopatia Chagásica/genética , Doença de Chagas/genética , Humanos , Interleucina-10/genética , Fatores de Risco
6.
Immunobiology ; 227(5): 152242, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35870262

RESUMO

Single nucleotide polymorphisms (SNPs) that do not change the composition of amino acids and cause synonymous mutations (sSNPs) were previously considered to lack any functional roles. However, sSNPs have recently been shown to interfere with protein expression owing to a myriad of factors related to the regulation of transcription, mRNA stability, and protein translation processes. In patients with Chagas disease, the presence of the synonymous mutation rs1129293 in phosphatidylinositol-4,5-bisphosphate 3-kinase gamma (PIK3CG) gene contributes to the development of the chronic Chagas cardiomyopathy (CCC), instead of the digestive or asymptomatic forms. In this study, we aimed to investigate whether rs1129293 is associated with the transcription of PIK3CG mRNA and its activity by quantifying AKT phosphorylation in the heart samples of 26 chagasic patients with CCC. Our results showed an association between rs1129293 and decreased PIK3CG mRNA expression levels in the cardiac tissues of patients with CCC. The phosphorylation levels of AKT, the protein target of PI3K, were also reduced in patients with this mutation, but were not correlated with PI3KCG mRNA expression levels. Moreover, bioinformatics analysis showed that rs1129293 and other SNPs in linkage disequilibrium (LD) were associated with the transcriptional regulatory elements, post-transcriptional modifications, and cell-specific splicing expression of PIK3CG mRNA. Therefore, our data demonstrates that the synonymous SNP rs1129293 is capable of affecting the PIK3CG mRNA expression and PI3Kγ activation.


Assuntos
Cardiomiopatia Chagásica , Cardiomiopatia Chagásica/genética , Classe Ib de Fosfatidilinositol 3-Quinase/genética , Humanos , Fosfatidilinositol 3-Quinases , Polimorfismo de Nucleotídeo Único , Proteínas Proto-Oncogênicas c-akt , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Mutação Silenciosa
7.
PLoS Negl Trop Dis ; 15(11): e0009978, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34784372

RESUMO

BACKGROUND: Chagas disease, caused by the protozoan Trypanosoma cruzi, is endemic in Latin America and is widely distributed worldwide because of migration. In 30% of cases, after years of infection and in the absence of treatment, the disease progresses from an acute asymptomatic phase to a chronic inflammatory cardiomyopathy, leading to heart failure and death. An inadequate balance in the inflammatory response is involved in the progression of chronic Chagas cardiomyopathy. Current therapeutic strategies cannot prevent or reverse the heart damage caused by the parasite. Aspirin-triggered resolvin D1 (AT-RvD1) is a pro-resolving mediator of inflammation that acts through N-formyl peptide receptor 2 (FPR2). AT-RvD1 participates in the modification of cytokine production, inhibition of leukocyte recruitment and efferocytosis, macrophage switching to a nonphlogistic phenotype, and the promotion of healing, thus restoring organ function. In the present study, AT-RvD1 is proposed as a potential therapeutic agent to regulate the pro-inflammatory state during the early chronic phase of Chagas disease. METHODOLOGY/PRINCIPAL FINDINGS: C57BL/6 wild-type and FPR2 knock-out mice chronically infected with T. cruzi were treated for 20 days with 5 µg/kg/day AT-RvD1, 30 mg/kg/day benznidazole, or the combination of 5 µg/kg/day AT-RvD1 and 5 mg/kg/day benznidazole. At the end of treatment, changes in immune response, cardiac tissue damage, and parasite load were evaluated. The administration of AT-RvD1 in the early chronic phase of T. cruzi infection regulated the inflammatory response both at the systemic level and in the cardiac tissue, and it reduced cellular infiltrates, cardiomyocyte hypertrophy, fibrosis, and the parasite load in the heart tissue. CONCLUSIONS/SIGNIFICANCE: AT-RvD1 was shown to be an attractive therapeutic due to its regulatory effect on the inflammatory response at the cardiac level and its ability to reduce the parasite load during early chronic T. cruzi infection, thereby preventing the chronic cardiac damage induced by the parasite.


Assuntos
Cardiomiopatia Chagásica/tratamento farmacológico , Ácidos Docosa-Hexaenoicos/administração & dosagem , Animais , Cardiomiopatia Chagásica/genética , Cardiomiopatia Chagásica/imunologia , Cardiomiopatia Chagásica/parasitologia , Doença Crônica/tratamento farmacológico , Modelos Animais de Doenças , Feminino , Coração/efeitos dos fármacos , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miocárdio/imunologia , Nitroimidazóis/administração & dosagem , Carga Parasitária , Receptores de Formil Peptídeo/genética , Receptores de Formil Peptídeo/imunologia , Trypanosoma cruzi/fisiologia
8.
PLoS Negl Trop Dis ; 15(10): e0009874, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34714828

RESUMO

A recent genome-wide association study (GWAS) identified a locus in chromosome 11 associated with the chronic cardiac form of Chagas disease. Here we aimed to elucidate the potential functional mechanism underlying this genetic association by analyzing the correlation among single nucleotide polymorphisms (SNPs) and DNA methylation (DNAm) levels as cis methylation quantitative trait loci (cis-mQTL) within this region. A total of 2,611 SNPs were tested against 2,647 DNAm sites, in a subset of 37 chronic Chagas cardiomyopathy patients and 20 asymptomatic individuals from the GWAS. We identified 6,958 significant cis-mQTLs (False Discovery Rate [FDR]<0.05) at 1 Mb each side of the GWAS leading variant, where six of them potentially modulate the expression of the SAC3D1 gene, the reported gene in the previous GWAS. In addition, a total of 268 cis-mQTLs showed differential methylation between chronic Chagas cardiomyopathy patients and asymptomatic individuals. The most significant cis-mQTLs mapped in the gene bodies of POLA2 (FDR = 1.04x10-11), PLAAT3 (FDR = 7.22x10-03), and CCDC88B (FDR = 1.89x10-02) that have been associated with cardiovascular and hematological traits in previous studies. One of the most relevant interactions correlated with hypermethylation of CCDC88B. This gene is involved in the inflammatory response, and its methylation and expression levels have been previously reported in Chagas cardiomyopathy. Our findings support the functional relevance of the previously associated genomic region, highlighting the regulation of novel genes that could play a role in the chronic cardiac form of the disease.


Assuntos
Cardiomiopatia Chagásica/genética , Adulto , Idoso , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Cardiomiopatia Chagásica/metabolismo , Metilação de DNA , DNA Polimerase I/genética , DNA Polimerase I/metabolismo , Feminino , Estudo de Associação Genômica Ampla , Humanos , Masculino , Pessoa de Meia-Idade , Fosfolipases A2 Independentes de Cálcio/genética , Fosfolipases A2 Independentes de Cálcio/metabolismo , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo
9.
Infect Genet Evol ; 95: 105079, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34509648

RESUMO

Chronic Chagas cardiomyopathy (CCC) is an acquired inflammatory cardiomyopathy triggered by the protozoan Trypanosoma cruzi infection. Although microvascular and neurogenic dysfunction and inflammation with persistent parasite presence in the heart may play a major pathogenetic role, little is known about the overall picture of gene co-expression regulating CCC. In this study, we aimed to explore the key biological pathways, hub genes and the landscope of infiltrating immune cells associated with inflammation in chronic Chagas cardiomyopathy. A weighted gene co-expression network analysis (WGCNA) was conducted based on the gene expression profiles from patients with and without chronic Chagas cardiomyopathy (GSE84796). Twelve coexpression modules were identified from the top 25% variant genes. Among them, the turquoise and black module were significantly positively correlated with CCC, which were highly enriched in Th1 and Th2 cell differentiation, the Cytokine-cytokine receptor interaction,NF-kappa B signaling pathway and T cell receptor signaling pathway. In addition, four genes (TBX21, ZAP70,IL2RB and CD69) were selected as candidate hub genes. Gene expression for hub genes were higher in CCC tissues compared to tissues from healthy controls. Additionally, gene set enrichment analysis (GSEA) analysis showed that high expressions of these hub genes were significantly correlated with interferon α response and interferon γ response. The microarray dataset GSE41089 further confirmed that although CD69 was not detected, the expression of TBX21, IL2RB and ZAP70 was also significantly up-regulated in the CCC mice compared to controls. We further studied the immune cells infiltration in CCC patients with CIBERSORT. The fraction of Mast cells activated,T cells CD8 and T cells gamma delta were significantly increased in CCC patients compared with control. Our research provides a more effective understanding of the pathogenesis of CCC and could help in future strategies for new diagnostic and therapeutic approaches for CCC patients.


Assuntos
Cardiomiopatia Chagásica/genética , Cardiomiopatia Chagásica/imunologia , Biologia Computacional , Trypanosoma cruzi/fisiologia , Animais , Doença Crônica , Humanos , Camundongos
10.
Arq Bras Cardiol ; 117(1): 132-141, 2021 07.
Artigo em Inglês, Português | MEDLINE | ID: mdl-34320083

RESUMO

Chagas disease (CD) is caused by Trypanosoma Cruzi. This parasite can infect several organs of the human body, mainly the heart, causing inflammation, fibrosis, arrhythmias, and cardiac remodeling, promoting long-term Chronic Chagas Cardiomyopathy (CCC). However, little scientific evidence has elucidated the molecular mechanisms that govern the pathophysiological processes in this disease. MicroRNAs (miRNAs) are regulators of post-transcriptional gene expression that modulate signaling pathways, participating in pathophysiological mechanisms in CD, but the understanding of miRNAs in this disease is limited. On the other hand, a wide range of scientific evidence shows that physical exercise training (PET) modulates the expression of miRNAs by modifying different signaling pathways in healthy individuals. Some studies also show that PET is beneficial for individuals with CD; however, these did not evaluate the miRNA expressions. Thus, there is no evidence showing the role of PET in the expression of miRNAs in CD. Therefore, this review aimed to identify miRNAs expressed in CD that could potentially be modified by PET.


A doença de Chagas (DC) é causada pelo Trypanosoma Cruzi. Esse parasita pode infectar vários órgãos do corpo humano, especialmente o coração, causando inflamação, fibrose, arritmias e remodelação cardíaca, e promovendo a cardiomiopatia chagásica crônica (CCC) no longo prazo. Entretanto, poucas evidências científicas elucidaram os mecanismos moleculares que regulam os processos fisiopatológicos nessa doença. Os microRNAs (miRNAs) são reguladores de expressão gênica pós-transcricional que modulam a sinalização celular, participando de mecanismos fisiopatológicos da DC, mas o entendimento dos miRNAs nessa doença é limitado. Por outro lado, há muitas evidências científicas demonstrando que o treinamento com exercício físico (TEF) modula a expressão de miRNAs, modificando a sinalização celular em indivíduos saudáveis. Alguns estudos também demonstram que o TEF traz benefícios para indivíduos com DC, porém esses não avaliaram as expressões de miRNA. Dessa forma, não há evidências demonstrando o papel do TEF na expressão dos miRNAs na DC. Portanto, essa revisão teve o objetivo de identificar os miRNAs expressos na DC que poderiam ser modificados pelo TEF.


Assuntos
Cardiomiopatia Chagásica , Doença de Chagas , MicroRNAs , Trypanosoma cruzi , Cardiomiopatia Chagásica/genética , Exercício Físico , Humanos , MicroRNAs/genética
11.
Arq. bras. cardiol ; 117(1): 132-141, July. 2021. tab, graf
Artigo em Inglês, Português | LILACS | ID: biblio-1285223

RESUMO

Resumo A doença de Chagas (DC) é causada pelo Trypanosoma Cruzi. Esse parasita pode infectar vários órgãos do corpo humano, especialmente o coração, causando inflamação, fibrose, arritmias e remodelação cardíaca, e promovendo a cardiomiopatia chagásica crônica (CCC) no longo prazo. Entretanto, poucas evidências científicas elucidaram os mecanismos moleculares que regulam os processos fisiopatológicos nessa doença. Os microRNAs (miRNAs) são reguladores de expressão gênica pós-transcricional que modulam a sinalização celular, participando de mecanismos fisiopatológicos da DC, mas o entendimento dos miRNAs nessa doença é limitado. Por outro lado, há muitas evidências científicas demonstrando que o treinamento com exercício físico (TEF) modula a expressão de miRNAs, modificando a sinalização celular em indivíduos saudáveis. Alguns estudos também demonstram que o TEF traz benefícios para indivíduos com DC, porém esses não avaliaram as expressões de miRNA. Dessa forma, não há evidências demonstrando o papel do TEF na expressão dos miRNAs na DC. Portanto, essa revisão teve o objetivo de identificar os miRNAs expressos na DC que poderiam ser modificados pelo TEF.


Abstract Chagas disease (CD) is caused by Trypanosoma Cruzi. This parasite can infect several organs of the human body, mainly the heart, causing inflammation, fibrosis, arrhythmias, and cardiac remodeling, promoting long-term Chronic Chagas Cardiomyopathy (CCC). However, little scientific evidence has elucidated the molecular mechanisms that govern the pathophysiological processes in this disease. MicroRNAs (miRNAs) are regulators of post-transcriptional gene expression that modulate signaling pathways, participating in pathophysiological mechanisms in CD, but the understanding of miRNAs in this disease is limited. On the other hand, a wide range of scientific evidence shows that physical exercise training (PET) modulates the expression of miRNAs by modifying different signaling pathways in healthy individuals. Some studies also show that PET is beneficial for individuals with CD; however, these did not evaluate the miRNA expressions. Thus, there is no evidence showing the role of PET in the expression of miRNAs in CD. Therefore, this review aimed to identify miRNAs expressed in CD that could potentially be modified by PET.


Assuntos
Humanos , Trypanosoma cruzi , Cardiomiopatia Chagásica/genética , Doença de Chagas , MicroRNAs/genética , Exercício Físico
12.
Int J Mol Sci ; 22(7)2021 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-33804922

RESUMO

Chagas disease, caused by the parasite Trypanosoma cruzi (T. cruzi), remains a serious public health problem for which there is no effective treatment in the chronic stage. Intense cardiac fibrosis and inflammation are hallmarks of chronic Chagas disease cardiomyopathy (CCC). Previously, we identified upregulation of circulating and cardiac miR-21, a pro-fibrotic microRNA (miRNA), in subjects with CCC. Here, we explored the potential role of miR-21 as a therapeutic target in a model of chronic Chagas disease. PCR array-based 88 microRNA screening was performed in heart samples obtained from C57Bl/6 mice chronically infected with T. cruzi and serum samples collected from CCC patients. MiR-21 was found upregulated in both human and mouse samples, which was corroborated by an in silico analysis of miRNA-mRNA target prediction. In vitro miR-21 functional assays (gain-and loss-of-function) were performed in cardiac fibroblasts, showing upregulation of miR-21 and collagen expression upon transforming growth factor beta 1 (TGFß1) and T. cruzi stimulation, while miR-21 blockage reduced collagen expression. Finally, treatment of T. cruzi-infected mice with locked nucleic acid (LNA)-anti-miR-21 inhibitor promoted a significant reduction in cardiac fibrosis. Our data suggest that miR-21 is a mediator involved in the pathogenesis of cardiac fibrosis and indicates the pharmacological silencing of miR-21 as a potential therapeutic approach for CCC.


Assuntos
Cardiomiopatia Chagásica/terapia , MicroRNAs/genética , Terapêutica com RNAi/métodos , Animais , Células Cultivadas , Cardiomiopatia Chagásica/genética , Cardiomiopatia Chagásica/metabolismo , Cardiomiopatia Chagásica/patologia , Colágeno/genética , Colágeno/metabolismo , Fibrose , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/metabolismo , Miócitos Cardíacos/metabolismo , Miofibroblastos/metabolismo , Regulação para Cima
13.
J Clin Immunol ; 41(5): 1048-1063, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33660144

RESUMO

Cardiomyopathies are an important cause of heart failure and sudden cardiac death. Little is known about the role of rare genetic variants in inflammatory cardiomyopathy. Chronic Chagas disease cardiomyopathy (CCC) is an inflammatory cardiomyopathy prevalent in Latin America, developing in 30% of the 6 million patients chronically infected by the protozoan Trypanosoma cruzi, while 60% remain free of heart disease (asymptomatic (ASY)). The cytokine interferon-γ and mitochondrial dysfunction are known to play a major pathogenetic role. Chagas disease provides a unique model to probe for genetic variants involved in inflammatory cardiomyopathy. METHODS: We used whole exome sequencing to study nuclear families containing multiple cases of Chagas disease. We searched for rare pathogenic variants shared by all family members with CCC but absent in infected ASY siblings and in unrelated ASY. RESULTS: We identified heterozygous, pathogenic variants linked to CCC in all tested families on 22 distinct genes, from which 20 were mitochondrial or inflammation-related - most of the latter involved in proinflammatory cytokine production. Significantly, incubation with IFN-γ on a human cardiomyocyte line treated with an inhibitor of dihydroorotate dehydrogenase brequinar (enzyme showing a loss-of-function variant in one family) markedly reduced mitochondrial membrane potential (ΔψM), indicating mitochondrial dysfunction. CONCLUSION: Mitochondrial dysfunction and inflammation may be genetically determined in CCC, driven by rare genetic variants. We hypothesize that CCC-linked genetic variants increase mitochondrial susceptibility to IFN-γ-induced damage in the myocardium, leading to the cardiomyopathy phenotype in Chagas disease. This mechanism may also be operative in other inflammatory cardiomyopathies.


Assuntos
Cardiomiopatia Chagásica/genética , Inflamação/genética , Mitocôndrias/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Predisposição Genética para Doença , Variação Genética , Humanos , Masculino , Pessoa de Meia-Idade , Sequenciamento do Exoma
14.
Clin Infect Dis ; 73(4): 672-679, 2021 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-33539531

RESUMO

BACKGROUND: Chagas disease is an infectious disease caused by the parasite Trypanosoma cruzi and is endemic from Latin American countries. The goal of our study was to identify novel genetic loci associated with chronic Chagas cardiomyopathy development in Chagas disease patients from different Latin American populations. METHODS: We performed a cross-sectional, nested case-control study including 3 sample collections from Colombia, Argentina, and Bolivia. Samples were genotyped to conduct a genome-wide association study (GWAS). These results were meta-analyzed with summary statistic data from Brazil, gathering a total of 3413 Chagas disease patients. To identify the functional impact of the associated variant and its proxies, we performed an in silico analysis of this region. RESULTS: The meta-analysis revealed a novel genome-wide statistically significant association with chronic Chagas cardiomyopathy development in rs2458298 (OR = 0.90, 95%CI = 0.87-0.94, P-value = 3.27 × 10-08), nearby the SAC3D1 gene. In addition, further in silico analyses displayed functional relationships between the associated variant and the SNX15, BAFT2, and FERMT3 genes, related to cardiovascular traits. CONCLUSIONS: Our findings support the role of the host genetic factors in the susceptibility to the development of the chronic cardiac form of this neglected disease.


Assuntos
Cardiomiopatia Chagásica , Doença de Chagas , Trypanosoma cruzi , Estudos de Casos e Controles , Cardiomiopatia Chagásica/genética , Estudos Transversais , Estudo de Associação Genômica Ampla , Humanos , Trypanosoma cruzi/genética
15.
Parasite Immunol ; 43(4): e12821, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33449376

RESUMO

INTRODUCTION: Chagas disease (CD) is a global health concern with approximately 12 000 deaths per year worldwide. In the chronic phase, about 30% of patients develop the cardiac clinical form, which presents symptoms associated with the presence of inflammatory cells in the cardiac tissue. Neutrophils are inflammatory cells able to modulate the chronic immune response against pathogens. These cells are capable of interacting with Trypanosoma cruzi, the aetiological agent of CD, and perform several effector functions, such as NET release. However, few studies have been carried out to investigate the role of these cells in the disease. AIMS: To investigate the release of NETs by neutrophils from CD patients by measuring the amount of DNA and elastase released. METHODS AND RESULTS: Measurement of DNA release by neutrophils from chronic CD patients presenting the indeterminate (IND group; n = 18) and cardiac (CARD group; n = 15) clinical forms and nonchagasic subjects (n = 18) stimulated with soluble antigen of T. cruzi was quantified using the Quant-iT™ PicoGreen® dsDNA assay kit. Patients from CARD group release less DNA (117.3 ± 21.85 ng/mL; *P = .0131) than neutrophils from control (177.7 ± 58.41 ng/mL). Elastase enzyme degranulation was measured using the substrate N-methoxysuccinyl-Ala-Ala-Pro-Val p-nitroanilide (SAAVNA). Absorbance values of elastase degranulation activity showed that only cells from healthy individuals presented a high release profile of elastase. Also, we found a negative correlation between DNA released concentration and risk of death (r = -.6574; *P = .0173); the lower the neutrophil DNA release from chagasic patients with cardiac event, the higher the risk of death. CONCLUSION: These preliminary data show that patients with the cardiac form of CD release less NETs than nonchagasic individuals, raising the possibility that lower release of NETs enhances risk of death in CD patients with cardiac events.


Assuntos
Cardiomiopatia Chagásica/metabolismo , Grânulos Citoplasmáticos/enzimologia , Histonas/metabolismo , Neutrófilos/metabolismo , Elastase Pancreática/metabolismo , Peroxidase/metabolismo , Antígenos de Protozoários/imunologia , Cardiomiopatia Chagásica/enzimologia , Cardiomiopatia Chagásica/genética , Feminino , Humanos , Masculino , Neutrófilos/enzimologia , Trypanosoma cruzi/imunologia
16.
Parasitol Int ; 80: 102213, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33137501

RESUMO

Host genetic factors have been proposed as determinants of the variable progression of Chagas disease (ChD). Two polymorphisms, H558R and A572D, of the voltage-gated sodium channel α-subunit SCN5A gene were studied in chagasic patients in order to determine their contribution to the susceptibility to the development and/or to the progression of the cardiovascular disease. A total of 104 patients were classified as seronegative or seropositive for Trypanosoma cruzi antibodies. Clinical evaluation, electrocardiograms (ECG) and echocardiograms (Echo) were performed to detect any conduction and/or structural alteration. Patients were classified into: G1: without ECG and/or Echo alterations, G2: with ECG alterations and G3: with ECG and Echo alterations. H558R and A572D polymorphisms were detected by PCR. Cardiac alterations were more frequent in G2 + G3 seropositive patients. For H558R polymorphism, the C allele was significantly increased in seropositive G2 + G3 patients (P = 0.049. OR = 2.08; 95% CI = 1.12-4.33). When comparing the disease cardiac progression (G2 vs G3), the genotypes from the H558R polymorphism were associated to more intense cardiac alterations (P = 0.018). For A572D polymorphism, no associations were found. The results suggest a possible involvement of SCN5A polymorphisms in the susceptibility to chronic ChD and the disease progression, contributing to the elucidation of the molecular mechanism underlying this complex myocardiopathy. In this regard, this is the first work that studies this gene in the context of chagasic cardiomyopathy.


Assuntos
Cardiomiopatia Chagásica/genética , Canal de Sódio Disparado por Voltagem NAV1.5/genética , Polimorfismo Genético , Adulto , Idoso , Argentina , Cardiomiopatia Chagásica/patologia , Feminino , Marcadores Genéticos/genética , Humanos , Masculino , Pessoa de Meia-Idade , Canal de Sódio Disparado por Voltagem NAV1.5/metabolismo
17.
Infect Genet Evol ; 88: 104671, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33301989

RESUMO

Chagas disease is caused by the protozoan parasite Trypanosoma cruzi. During the chronic phase of disease, while most infected people do not present symptoms, characterizing the asymptomatic form, some patients develop the cardiac form or chronic chagasic cardiomyopathy, which is considered the most severe manifestation of this disease. Considering that the activation of the PI3Kγ signaling pathway is essential for an efficient immune response against T. cruzi infection, we evaluated the PIK3CG C > T (rs1129293) polymorphism in exon 3 of this gene, which encodes the catalytic subunit of PI3Kγ. The PIK3CG CT and TT genotypes were found to be associated with an increased risk of developing the cardiac form of the disease rather than the asymptomatic or digestive forms. In conclusion, the presence of the T allele at single or double doses may differentiate the cardiac from other clinical manifestations of Chagas disease. This finding should help in further studies to evaluate the mechanisms underlying the differential association of PIK3CG in Chagas disease.


Assuntos
Domínio Catalítico/genética , Cardiomiopatia Chagásica/genética , Doença de Chagas/genética , Doença de Chagas/parasitologia , Classe Ib de Fosfatidilinositol 3-Quinase/genética , Polimorfismo de Nucleotídeo Único , Trypanosoma cruzi , Cardiomiopatia Chagásica/parasitologia , Classe Ib de Fosfatidilinositol 3-Quinase/metabolismo , Variação Genética , Genótipo , Coração/parasitologia , Interações Hospedeiro-Parasita , Humanos , Doenças Negligenciadas/genética , Doenças Negligenciadas/parasitologia , Transdução de Sinais
18.
Mem Inst Oswaldo Cruz ; 115: e200110, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33146244

RESUMO

We aimed to investigate the association of CD14 -260C/T (rs2569190) polymorphism and Chagas cardiomyopathy and the functional characteristics of CD14+ and CD14- monocytes upon infection with Trypanosoma cruzi. We observed an association between the T- genotype (absence of allele -260T) related to low CD14 expression and the dilated cardiomyopathy type of Chagas disease. Furthermore, we observed that CD14- monocytes showed a more activated profile upon in vitro infection with T. cruzi than CD14+ monocytes. Our findings suggest that T- genotype is associated with susceptibility to develop Chagas dilated cardiomyopathy, likely linked to the T. cruzi-induced inflammatory profile of CD14- monocytes.


Assuntos
Cardiomiopatia Dilatada/genética , Cardiomiopatia Chagásica/genética , Receptores de Lipopolissacarídeos/genética , Doença de Chagas , Genótipo , Insuficiência Cardíaca , Humanos , Trypanosoma cruzi , Disfunção Ventricular Esquerda
19.
Front Immunol ; 11: 1386, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32733459

RESUMO

Background: Chagas disease, caused by the protozoan Trypanosoma cruzi, is endemic in Latin America. Thirty percent of infected individuals develop chronic Chagas cardiomyopathy (CCC), an inflammatory dilated cardiomyopathy that is the most important clinical consequence of T. cruzi infection, while the others remain asymptomatic (ASY). IFN-γ and IFN-γ-producing Th1-type T cells are increased in peripheral blood and CCC myocardium as compared to ASY patients, while the Th1-antagonizing cytokine IL-10 is more expressed in ASY patients. Importantly IFN-γ-producing Th1-type T cells are the most frequent cytokine-producing T cell subset in CCC myocardium, while expression of Th1-antagonizing cytokines IL-10 and IL-4 is unaltered. The control of IFN-γ production by Th1-type T cells may be a key event for progression toward CCC. A genetic component to disease progression was suggested by the familial aggregation of cases and the association of gene polymorphisms with CCC development. We here investigate the role of gene polymorphisms (SNPs) in several genes involved in the control of IFN-γ production and Th1 T cell differentiation in CCC development. Methods: We studied a Brazilian population including 315 CCC cases and 118 ASY subjects. We assessed 35 Tag SNPs designed to represent all the genetic information contained in the IL12B, IL10, IFNG, and IL4 genes. Results: We found 2 IL12 SNPs (rs2546893, rs919766) and a trend of association for a IL10 SNP (rs3024496) to be significantly associated with the ASY group. these associations were confirmed by multivariate analysis and allele tests. The rs919766C, 12rs2546893G, and rs3024496C alleles were associated to an increase risk to CCC development. Conclusions: Our data show that novel polymorphisms affecting IL12B and IL10, but not IFNG or IL4 genes play a role in genetic susceptibility to CCC development. This might indicate that the increased Th1 differentiation and IFN-γ production associated with CCC is genetically controlled.


Assuntos
Cardiomiopatia Chagásica/genética , Interleucina-10/genética , Subunidade p40 da Interleucina-12/genética , Diferenciação Celular , Cardiomiopatia Chagásica/imunologia , Doença Crônica , Progressão da Doença , Predisposição Genética para Doença , Interferon gama/biossíntese , Interferon gama/genética , Interleucina-4/genética , Polimorfismo de Nucleotídeo Único , Células Th1/imunologia
20.
Mol Biochem Parasitol ; 238: 111283, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32564978

RESUMO

Posaconazole (POS) is an inhibitor of ergosterol biosynthesis in clinical use for treating invasive fungal infections. POS has potent and selective anti-Trypanosoma cruzi activity and has been evaluated as a possible treatment for Chagas disease. Microtissues are a 3D culture system that has been shown to reproduce better tissue architecture and functionality than cell cultures in monolayer (2D). It has been used to evaluate chemotropic response as in vitro disease models. We previously developed an in vitro model that reproduces aspects of cardiac fibrosis observed in Chagas cardiomyopathy, using microtissues formed by primary cardiac cells infected by the T. cruzi, here called T. cruzi fibrotic cardiac microtissue (TCFCM). We also showed that the treatment of TCFCM with a TGF-ß pathway inhibitor reduces fibrosis. Here, we aimed to evaluate the effect of POS in TCFCM, observing parasite load and molecules involved in fibrosis. To choose the concentration of POS to be used in TCFCM we first performed experiments in a monolayer of primary cardiac cell cultures and, based on the results, TCFCM was treated with 5 nM of POS for 96 h, starting at 144 h post-infection. Our previous studies showed that at this time the TCFCM had established fibrosis, resulting from T. cruzi infection. Treatment with POS of TCFCM reduced 50 % of parasite load as observed by real-time PCR and reduced markedly the fibrosis as observed by western blot and immunofluorescence, associated with a strong reduction in the expression of fibronectin and laminin (45 % and 54 %, respectively). POS treatment also changed the expression of proteins involved in the regulation of extracellular matrix proteins (TGF-ß and TIMP-4, increased by 50 % and decreased by 58 %, respectively) in TCFCM. In conclusion, POS presented a potent trypanocidal effect both in 2D and in TCFCM, and the reduction of the parasite load was associated with a reduction of fibrosis in the absence of external immunological effectors.


Assuntos
Cardiomiopatia Chagásica/tratamento farmacológico , Fibrose Endomiocárdica/tratamento farmacológico , Miócitos Cardíacos/efeitos dos fármacos , Triazóis/farmacologia , Tripanossomicidas/farmacologia , Trypanosoma cruzi/efeitos dos fármacos , Animais , Técnicas de Cultura de Células , Cardiomiopatia Chagásica/genética , Cardiomiopatia Chagásica/parasitologia , Cardiomiopatia Chagásica/patologia , Fibrose Endomiocárdica/genética , Fibrose Endomiocárdica/parasitologia , Fibrose Endomiocárdica/patologia , Proteínas da Matriz Extracelular/genética , Proteínas da Matriz Extracelular/metabolismo , Feto , Fibronectinas/genética , Fibronectinas/metabolismo , Regulação da Expressão Gênica , Humanos , Concentração Inibidora 50 , Laminina/genética , Laminina/metabolismo , Camundongos , Modelos Biológicos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/parasitologia , Carga Parasitária , Cultura Primária de Células , Inibidores Teciduais de Metaloproteinases/genética , Inibidores Teciduais de Metaloproteinases/metabolismo , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/metabolismo , Trypanosoma cruzi/crescimento & desenvolvimento , Trypanosoma cruzi/patogenicidade , Inibidor Tecidual 4 de Metaloproteinase
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA